Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 738
1.
Nutr Diabetes ; 14(1): 25, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729941

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS: A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS: Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION: Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.


Gastrointestinal Microbiome , Glycemic Index , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Prebiotics , Probiotics , Synbiotics , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diet therapy , Prebiotics/administration & dosage , Probiotics/therapeutic use , Probiotics/administration & dosage , Synbiotics/administration & dosage , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/therapy , Insulin/blood
2.
Cell Commun Signal ; 22(1): 268, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745207

Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.


Colitis, Ulcerative , Gastrointestinal Microbiome , Prebiotics , Probiotics , Humans , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Probiotics/therapeutic use , Probiotics/administration & dosage , Prebiotics/administration & dosage , Animals
3.
Sci Rep ; 14(1): 10960, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744950

The relationship between gut microbiota and obesity has recently been an important subject for research as the gut microbiota is thought to affect body homeostasis including body weight and composition, intervening with pro and prebiotics is an intelligent possible way for obesity management. To evaluate the effect of hypo caloric adequate fiber regimen with probiotic supplementation and physical exercise, whether it will have a good impact on health, body composition, and physique among obese Egyptian women or has no significant effect. The enrolled 58 women, in this longitudinal follow-up intervention study; followed a weight loss eating regimen (prebiotic), including a low-carbohydrate adequate-fiber adequate-protein dietary pattern with decreased energy intake. They additionally received daily probiotic supplements in the form of yogurt and were instructed to exercise regularly for 3 months. Anthropometric measurements, body composition, laboratory investigations, and microbiota analysis were obtained before and after the 3 months weight loss program. Statistically highly significant differences in the anthropometry, body composition parameters: and obesity-related biomarkers (Leptin, ALT, and AST) between the pre and post-follow-up measurements at the end of the study as they were all decreased. The prebiotic and probiotic supplementation induced statistically highly significant alterations in the composition of the gut microbiota with increased relative abundance of Lactobacillus, Bifidobacteria, and Bacteroidetes and decreased relative abundance of Firmicutes and Firmicutes/Bacteroidetes Ratio. Hypo caloric adequate fiber regimen diet with probiotics positively impacts body composition and is effective for weight loss normalizing serum Leptin and AST.


Body Composition , Gastrointestinal Microbiome , Obesity , Prebiotics , Probiotics , Humans , Probiotics/administration & dosage , Female , Prebiotics/administration & dosage , Adult , Longitudinal Studies , Obesity/therapy , Obesity/diet therapy , Obesity/microbiology , Weight Reduction Programs/methods , Weight Loss , Middle Aged , Exercise
4.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38690023

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Chitin , Colon , Disease Models, Animal , Glucans , Irritable Bowel Syndrome , Rats, Sprague-Dawley , Visceral Pain , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/physiopathology , Male , Humans , Colon/drug effects , Colon/pathology , Rats , Visceral Pain/drug therapy , Visceral Pain/physiopathology , Visceral Pain/metabolism , Visceral Pain/etiology , Chitin/pharmacology , Glucans/pharmacology , Glucans/administration & dosage , Mice , Prebiotics/administration & dosage , Trinitrobenzenesulfonic Acid/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/physiopathology , Colitis/pathology , HT29 Cells
5.
Calcif Tissue Int ; 114(5): 513-523, 2024 May.
Article En | MEDLINE | ID: mdl-38656326

Previously, we demonstrated that prebiotics may provide a complementary strategy for increasing calcium (Ca) absorption in adolescents which may improve long-term bone health. However, not all children responded to prebiotic intervention. We determine if certain baseline characteristics of gut microbiome composition predict prebiotic responsiveness. In this secondary analysis, we compared differences in relative microbiota taxa abundance between responders (greater than or equal to 3% increase in Ca absorption) and non-responders (less than 3% increase). Dual stable isotope methodologies were used to assess fractional Ca absorption at the end of crossover treatments with placebo, 10, and 20 g/day of soluble corn fiber (SCF). Microbial DNA was obtained from stool samples collected before and after each intervention. Sequencing of the 16S rRNA gene was used to taxonomically characterize the gut microbiome. Machine learning techniques were used to build a predictive model for identifying responders based on baseline relative taxa abundances. Model output was used to infer which features contributed most to prediction accuracy. We identified 19 microbial features out of the 221 observed that predicted responsiveness with 96.0% average accuracy. The results suggest a simplified prescreening can be performed to determine if a subject's bone health may benefit from a prebiotic. Additionally, the findings provide insight and prompt further investigation into the metabolic and genetic underpinnings affecting calcium absorption during pubertal bone development.


Calcium , Gastrointestinal Microbiome , Prebiotics , Adolescent , Child , Female , Humans , Male , Calcium/metabolism , Cross-Over Studies , Feces/microbiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/genetics , Pilot Projects , Prebiotics/administration & dosage
6.
Gut Microbes ; 16(1): 2338946, 2024.
Article En | MEDLINE | ID: mdl-38656273

Synbiotics combine the concepts of probiotics and prebiotics to synergistically enhance the health-associated effects of both components. Previously, we have shown that the intestinal persistence of inulin-utilizing L. plantarum Lp900 is significantly increased in rats fed an inulin-supplemented, high-calcium diet. Here we employed a competitive population dynamics approach to demonstrate that inulin and GOS can selectively enrich L. plantarum strains that utilize these substrates for growth during in vitro cultivation, but that such enrichment did not occur during intestinal transit in rats fed a GOS or inulin-supplemented diet. The intestinal persistence of all L. plantarum strains increased irrespective of their prebiotic utilization phenotype, which was dependent on the calcium level of the diet. Analysis of fecal microbiota and intestinal persistence decline rates indicated that prebiotic utilization capacity did not selectively stimulate intestinal persistence in prebiotic supplemented diets. Moreover, microbiota and organic acid profile analyses indicate that the prebiotic utilizing probiotic strains are vastly outcompeted by the endogenous prebiotic-utilizing microbiota, and that the collective enhanced persistence of all L. plantarum strains is most likely explained by their well-established tolerance to organic acids.


Feces , Gastrointestinal Microbiome , Inulin , Prebiotics , Animals , Prebiotics/administration & dosage , Inulin/metabolism , Inulin/administration & dosage , Rats , Feces/microbiology , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/physiology , Male , Probiotics/administration & dosage , Synbiotics/administration & dosage , Rats, Sprague-Dawley
7.
Braz J Med Biol Res ; 57: e13205, 2024.
Article En | MEDLINE | ID: mdl-38656071

Acute diarrhea is the second leading cause of morbidity and mortality attributed to infections in children under five years of age worldwide, with 1.7 million annual estimated cases and more than 500,000 deaths. Although hydroelectrolytic replacement is the gold standard in treating diarrhea, it does not interfere with the restoration of the intestinal microbiota. Several studies have searched for an adequate alternative in restructuring intestinal homeostasis, finding that treatments based on probiotics, prebiotics, and synbiotics are effective, which made such treatments increasingly present in clinical practice by reducing illness duration with minimal side effects. However, there are still controversies regarding some unwanted reactions in patients. The diversity of strains and the peculiarities of the pathogens that cause diarrhea require further studies to develop effective protocols for prevention and treatment. Here, we provide a descriptive review of childhood diarrhea, emphasizing treatment with probiotics, prebiotics, and synbiotics.


Diarrhea , Prebiotics , Probiotics , Synbiotics , Humans , Probiotics/therapeutic use , Synbiotics/administration & dosage , Prebiotics/administration & dosage , Diarrhea/microbiology , Diarrhea/therapy , Diarrhea/prevention & control , Child , Gastrointestinal Microbiome/physiology , Child, Preschool
8.
Gut Microbes ; 16(1): 2347021, 2024.
Article En | MEDLINE | ID: mdl-38685762

Inulin, an increasingly studied dietary fiber, alters intestinal microbiota. The aim of this study was to assess whether inulin decreases intestinal colonization by multidrug resistant E. coli and to investigate its potential mechanisms of action. Mice with amoxicillin-induced intestinal dysbiosis mice were inoculated with extended spectrum beta-lactamase producing E. coli (ESBL-E. coli). The combination of inulin and pantoprazole (IP) significantly reduced ESBL-E. coli fecal titers, whereas pantoprazole alone did not and inulin had a delayed and limited effect. Fecal microbiome was assessed using shotgun metagenomic sequencing and qPCR. The efficacy of IP was predicted by increased abundance of 74 taxa, including two species of Adlercreutzia. Preventive treatments with A. caecimuris or A. muris also reduced ESBL-E. coli fecal titers. Fecal microbiota of mice effectively treated by IP was enriched in genes involved in inulin catabolism, production of propionate and expression of beta-lactamases. They also had increased beta-lactamase activity and decreased amoxicillin concentration. These results suggest that IP act through production of propionate and degradation of amoxicillin by the microbiota. The combination of pantoprazole and inulin is a potential treatment of intestinal colonization by multidrug-resistant E. coli. The ability of prebiotics to promote propionate and/or beta-lactamase producing bacteria may be used as a screening tool to identify potential treatments of intestinal colonization by multidrug resistant Enterobacterales.


Amoxicillin , Drug Resistance, Multiple, Bacterial , Escherichia coli , Feces , Gastrointestinal Microbiome , Inulin , Pantoprazole , Animals , Inulin/pharmacology , Inulin/metabolism , Mice , Gastrointestinal Microbiome/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Feces/microbiology , Amoxicillin/pharmacology , Pantoprazole/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Dysbiosis/microbiology , Dysbiosis/drug therapy , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Female , Prebiotics/administration & dosage
9.
J Microbiol ; 62(3): 201-216, 2024 Mar.
Article En | MEDLINE | ID: mdl-38635003

The application of microbiome-based therapies in various areas of human disease has recently increased. In chronic respiratory disease, microbiome-based clinical applications are considered compelling options due to the limitations of current treatments. The lung microbiome is ecologically dynamic and affected by various conditions, and dysbiosis is associated with disease severity, exacerbation, and phenotype as well as with chronic respiratory disease endotype. However, it is not easy to directly modulate the lung microbiome. Additionally, studies have shown that chronic respiratory diseases can be improved by modulating gut microbiome and administrating metabolites. Although the composition, diversity, and abundance of the microbiome between the gut and lung are considerably different, modulation of the gut microbiome could improve lung dysbiosis. The gut microbiome influences that of the lung via bacterial-derived components and metabolic degradation products, including short-chain fatty acids. This phenomenon might be associated with the cross-talk between the gut microbiome and lung, called gut-lung axis. There are multiple alternatives to modulate the gut microbiome, such as prebiotics, probiotics, and postbiotics ingestion and fecal material transplantation. Several studies have shown that high-fiber diets, for example, present beneficial effects through the production of short-chain fatty acids. Additionally, genetically modified probiotics to secrete some beneficial molecules might also be utilized to treat chronic respiratory diseases. Further studies on microbial modulation to regulate immunity and potentiate conventional pharmacotherapy will improve microbiome modulation techniques, which will develop as a new therapeutic area in chronic respiratory diseases.


Dysbiosis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Probiotics , Humans , Probiotics/administration & dosage , Probiotics/therapeutic use , Dysbiosis/therapy , Dysbiosis/microbiology , Lung/microbiology , Chronic Disease , Prebiotics/administration & dosage , Microbiota , Animals , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics
10.
Nutrients ; 16(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674901

The consumption of functional foods in a daily diet is a promising approach for the maintenance of cognitive health. The present study examines the effects of water-soluble prebiotic dietary-fiber, partially hydrolyzed guar gum (PHGG), on cognitive function and mental health in healthy elderly individuals. Participants consumed either 5 g/day of PHGG or a placebo daily for 12 weeks in this randomized, double-blind, placebo-controlled, and parallel-group study. An assessment of cognitive functions, sleep quality, and subjective mood evaluations was performed at baseline and after 8 and 12 weeks of either PHGG or placebo intake. The visual memory scores in cognitive function tests and sleepiness on rising scores related to sleep quality were significantly improved in the PHGG group compared to the placebo group. No significant differences were observed in mood parameters between the groups. Vigor-activity scores were significantly improved, while the scores for Confusion-Bewilderment decreased significantly in the PHGG group when compared to the baseline. In summary, supplementation with PHGG was effective in improving cognitive functions, particularly visual memory, as well as enhancing sleep quality and vitality in healthy elderly individuals (UMIN000049070).


Cognition , Galactans , Mannans , Plant Gums , Humans , Galactans/pharmacology , Mannans/pharmacology , Mannans/administration & dosage , Plant Gums/pharmacology , Double-Blind Method , Cognition/drug effects , Aged , Male , Female , Sleep/drug effects , Prebiotics/administration & dosage , Sleep Quality , Dietary Fiber/pharmacology , Dietary Fiber/administration & dosage , Hydrolysis , Memory/drug effects , Dietary Supplements , Middle Aged , Healthy Volunteers , Affect/drug effects
11.
Crit Rev Oncol Hematol ; 197: 104328, 2024 May.
Article En | MEDLINE | ID: mdl-38490281

In recent years, cancer research has highlighted the role of disrupted microbiota in carcinogenesis and cancer recurrence. However, microbiota may also interfere with drug metabolism, influencing the efficacy of cancer drugs, especially immunotherapy, and modulating the onset of adverse events. Intestinal micro-organisms can be altered by external factors, such as use of antibiotics, proton pump inhibitors treatment, lifestyle and the use of prebiotics or probiotics. The aim of our review is to provide a picture of the current evidence about preclinical and clinical data of the role of gut and local microbiota in malignancies and its potential clinical role in cancer treatments. Standardization of microbiota sequencing approaches and its modulating strategies within prospective clinical trials could be intriguing for two aims: first, to provide novel potential biomarkers both for early cancer detection and for therapeutic effectiveness; second, to propose personalized and "microbiota-tailored" treatment strategies.


Gastrointestinal Microbiome , Neoplasms , Humans , Gastrointestinal Microbiome/drug effects , Neoplasms/microbiology , Neoplasms/therapy , Probiotics/therapeutic use , Prebiotics/administration & dosage , Microbiota/drug effects
12.
J Assoc Physicians India ; 71(9): 75-81, 2023 Sep.
Article En | MEDLINE | ID: mdl-38700306

The human gut microbiota fosters the development of a dynamic group of microorganisms impacted by diverse variables that include genetics, diet, infection, stress, ingested drugs, such as antibiotics and small intestine bacterial overgrowth (SIBO) as well as the gut microbiota itself. These factors may influence the change in microbial composition, which results in dysbiosis (microbial imbalance) and exposes the gut to pathogenic insults. Dysbiosis is incidental to the etiology of inflammatory diseases such as irritable bowel syndrome (IBS) and metabolic diseases, including type 2 diabetes and obesity. IBS exhibits different symptoms like abdominal pain or discomfort, distention/bloating, and flatulence. To treat IBS, modification of dysregulated gut microbiota can be done using treatment strategies like a low-fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) diet, antibiotics that cannot be absorbed like rifaximin and neomycin, probiotics and prebiotics, and fecal microbiota transplantation (FMT). The remedial modalities in the existing literature have been demonstrated to be efficacious in the prevention and mitigation of IBS. Additionally, newer curative approaches with serum-derived bovine immunoglobulin (SBI) are an effective option. The focal point of the review paper is the pathophysiology of IBS, mainly due to dysbiosis and the various factors that advance dysbiosis. Here, we have also discussed the different treatment strategies targeting dysbiosis that effectively treat IBS. How to cite this article: Abraham P, Pratap N. Dysbiosis in Irritable Bowel Syndrome. J Assoc Physicians India 2023;71(9):75-81.


Dysbiosis , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/therapy , Dysbiosis/therapy , Humans , Gastrointestinal Microbiome/physiology , Anti-Bacterial Agents/therapeutic use , Probiotics/therapeutic use , Fecal Microbiota Transplantation/methods , Prebiotics/administration & dosage
13.
Nutr. hosp ; 39(3): 663-677, may. - jun. 2022. ilus, tab, graf
Article Es | IBECS | ID: ibc-209949

Antecedentes: los trastornos gastrointestinales (TGI) son comorbilidades comunes en los pacientes con trastornos del espectro autista (TEA); los tratamientos con dietas libres de gluten y caseína (LGLC) o suplementos de prebióticos/probióticos podrían reducir la severidad de los TGI. Objetivo: integrar y discutir la evidencia sobre la efectividad de las terapias con dietas LGLC y suplementos de prebióticos/probióticos sobre los TGI en pacientes con TEA. Metodología: se utilizaron las guías para la publicación de revisiones sistemáticas y metaanálisis (PRISMA). Se analizaron las características de los participantes, las intervenciones dietéticas, la administración de suplementos de prebióticos/prebióticos, los efectos de las intervenciones sobre los TGI, el riesgo de sesgo de los estudios y la seguridad de los tratamientos. Resultados: se analizaron quince investigaciones; la prevalencia de los TGI entre los pacientes con TEA fue alta (58 %; rango, 27-83 %). En más del 20 % de los pacientes intervenidos con dietas LGLC o suplementos disminuyó la severidad de los TGI (principalmente estreñimiento, diarrea y dolor abdominal). Se reportaron aumentos en los conteos de bacterias benéficas y una disminución de la proporción de bacterias patógenas tras el uso de los suplementos. Sin embargo, todas estas investigaciones presentaron sesgos metodológicos importantes. Conclusiones: aunque se han encontrado reducciones en la frecuencia y severidad de algunos TGI, la efectividad de estos tratamientos aún no se ha comprobado. Dadas las diferencias metodológicas de las investigaciones, se justifica el diseño de estudios rigurosos para evaluar los efectos terapéuticos de estos tratamientos sobre la salud gastrointestinal en pacientes con TEA (AU)


Background: gastrointestinal disorders (GIDs) are common comorbidities in patients with autism spectrum disorders (ASD); treatments with gluten- and casein-free (LGLC) diets or prebiotic/probiotic supplements may reduce the severity of GIDs. Objective: to integrate and discuss the evidence on the effectiveness of LGLC diet therapies and prebiotic/probiotic supplements on GIDs in patients with ASD. Methodology: the guidelines for the publication of systematic reviews and meta-analyses (PRISMA) were used. Participant characteristics, dietary interventions, prebiotic/prebiotic supplementation, effects of interventions on GIDs, risk of bias, and safety of treatments were analyzed. Results: fifteen investigations were analyzed; the prevalence of GIDs among patients with ASD was high (58 %; range, 27-83 %). In more than 20 % of the patients managed with LGLC diets or supplements GID severity decreased (mainly constipation, diarrhea, and abdominal pain). Increases in the counts of beneficial bacteria and a decrease in the proportion of pathogenic bacteria were reported after supplement use. However, all these investigations had significant methodological biases. Conclusions: although reductions in the frequency and severity of some GIDs have been found, the effectiveness of these treatments has not been proven yet. Given the methodological differences in the investigations, the design of rigorous studies to evaluate the therapeutic effects of these treatments on gastrointestinal health in patients with ASD is warranted (AU)


Humans , Autism Spectrum Disorder/complications , Gastrointestinal Diseases/diet therapy , Gastrointestinal Diseases/etiology , Functional Food , Prebiotics/administration & dosage , Probiotics/administration & dosage
14.
Pharm Biol ; 60(1): 437-450, 2022 Dec.
Article En | MEDLINE | ID: mdl-35188051

CONTEXT: Ocimum sanctum Linn (Labiatae) (OS), Zingiber officinale Rose (Zingiberaceae) (ZO), and Piper nigrum Linn (Piperaceae) (PN) are used in traditional medicine as immunomodulator, anti-inflammatory, and bioavailability enhancer agents. OBJECTIVE: Active phytoconstituents of OS, ZO, PN hydro-alcoholic extracts and their effects on gut microbiota, basal inflammation and lipid profile were investigated in rats. MATERIALS AND METHODS: Active phytoconstituents of extracts were analysed using HPLC and GC-MS. SD rats were supplemented with individual/combined extracts (OS-850; ZO-500; PN-100 mg/kg Bw) and Fructooligosaccharide (standard prebiotic-5g/kg-Bw), orally for 30 days. Haematology, lipid profile, LPS, CRP, IL-6, insulin and histology of vital organs were analysed. Caecal bacterial levels were assessed by RT-PCR. RESULTS: High content of phenolic compounds luteolin-7-O-glucoside (430 ± 2.3 mg/100g), gallic acid (84.13 ± 1.2 mg/100 g) and flavones (88.18 ± 1.8 mg/100 g) were found in OS, ZO, and PN, respectively. Combined extract was rich in luteolin-7-O-glucoside (266.0 ± 1.80 mg/100 g). Essential oils including methyleugenol (13.96%), 6-shogaol (11.00%), piperine (18.26%), and cyclopentasiloxane (10.06%) were higher in OS, ZO, PN and combined extract. Higher levels of caecal Lactobacillus (1.7-3.4-fold), Bifidobacterium (5.89-28.4-fold), and lower levels of Firmicutes (0.04-0.91-fold), Bacteroides (0.69-0.88-fold) were noted among extracts and FOS supplemented rats. Significant (p < 0.05) decrease in plasma lipid profile and LPS was noted in all supplemented rats. DISCUSSION AND CONCLUSIONS: The current study could be first of its kind in exploring prebiotic potential of OS, ZO, PN and their effect on native gut bacterial population.


Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Female , Zingiber officinale/chemistry , Lipids/blood , Medicine, Traditional , Ocimum sanctum/chemistry , Oils, Volatile/isolation & purification , Piper nigrum/chemistry , Prebiotics/administration & dosage , Rats , Rats, Sprague-Dawley
15.
Nutrients ; 14(2)2022 Jan 12.
Article En | MEDLINE | ID: mdl-35057489

Constipation is a major issue for 10-20% of the global population. In a double-blind randomized placebo-controlled clinical trial, we aimed to determine a dose-response effect of galacto-oligosaccharides (GOS) on stool characteristics and fecal microbiota in 132 adults with self-reported constipation according to Rome IV criteria (including less than three bowel movements per week). Subjects (94% females, aged: 18-59 years) received either 11 g or 5.5 g of BiotisTM GOS, or a control product, once daily for three weeks. Validated questionnaires were conducted weekly to study primarily stool frequency and secondary stool consistency. At base- and endline, stool samples were taken to study fecal microbiota. A trend towards an increased stool frequency was observed after the intervention with 11 g of GOS compared to control. While during screening everybody was considered constipated, not all subjects (n = 78) had less than three bowel movements per week at baseline. In total, 11 g of GOS increased stool frequency compared to control in subjects with a low stool frequency at baseline (≤3 bowel movements per week) and in self-reported constipated adults 35 years of age or older. A clear dose-response of GOS was seen on fecal Bifidobacterium, and 11 g of GOS significantly increased Anaerostipes hadrus. In conclusion, GOS seems to be a solution to benefit adults with a low stool frequency and middle-aged adults with self-reported constipation.


Constipation/microbiology , Defecation/drug effects , Feces/microbiology , Galactose/pharmacology , Oligosaccharides/pharmacology , Prebiotics/administration & dosage , Adolescent , Adult , Bifidobacterium/drug effects , Constipation/therapy , Double-Blind Method , Female , Gastrointestinal Microbiome/drug effects , Humans , Male , Middle Aged , Self Report , Young Adult
16.
Nutrients ; 14(2)2022 Jan 14.
Article En | MEDLINE | ID: mdl-35057522

The gut microbiota is a key factor in the correct development of the gastrointestinal immune system. Studies have found differences between the gut microbiota of newborns delivered by cesarean section compared to those vaginally delivered. Our objective was to evaluate the effect of ingestion of probiotics, prebiotics, or synbiotics during pregnancy and/or lactation on the development of the gut microbiota of the C-section newborns. We selected experimental studies in online databases from their inception to October 2021. Of the 83 records screened, 12 met the inclusion criteria. The probiotics used belonged to the genera Lactobacillus, Bifidobacterium, Propionibacterium, and Streptococcus, or a combination of those, with dosages varying between 2 × 106 and 9 × 1011 CFU per day, and were consumed during pregnancy and/or lactation. Probiotic strains were combined with galacto-oligosaccharides, fructo-oligosaccharides, or bovine milk-derived oligosaccharides in the synbiotic formulas. Probiotic, prebiotic, and synbiotic interventions led to beneficial gut microbiota in cesarean-delivered newborns, closer to that in vaginally delivered newborns, especially regarding Bifidobacterium colonization. This effect was more evident in breastfed infants. The studies indicate that this beneficial effect is achieved when the interventions begin soon after birth, especially the restoration of bifidobacterial population. Changes in the infant microbial ecosystem due to the interventions seem to continue after the end of the intervention in most of the studies. More interventional studies are needed to elucidate the optimal synbiotic combinations and the most effective strains and doses for achieving the optimal gut microbiota colonization of C-section newborns.


Cesarean Section/adverse effects , Gastrointestinal Microbiome , Maternal Nutritional Physiological Phenomena , Prebiotics/administration & dosage , Probiotics/administration & dosage , Bifidobacterium , Breast Feeding , Ecosystem , Female , Humans , Infant, Newborn , Lactation , Lactobacillus , Male , Pregnancy , Prenatal Care/methods , Synbiotics/administration & dosage
17.
Nutrients ; 14(2)2022 Jan 17.
Article En | MEDLINE | ID: mdl-35057561

Parkinson's disease is characterized by motor and non-motor symptoms, such as defects in the gut function, which may occur before the motor symptoms. To date, there are therapies that can improve these symptoms, but there is no cure to avoid the development or exacerbation of this disorder. Dysbiosis of gut microbiota could have a crucial role in the gut-brain axis, which is a bidirectional communication between the central nervous system and the enteric nervous system. Diet can affect the microbiota composition, impacting gut-brain axis functionality. Gut microbiome restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional communication between gut and brain, thus supporting the hypothesis that this disorder could begin in the gut. We also focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.


Brain-Gut Axis/physiology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Diet , Disease Progression , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiopathology , Humans , Nutrition Therapy , Prebiotics/administration & dosage , Probiotics/therapeutic use , Synbiotics/administration & dosage
18.
Sci Rep ; 12(1): 1152, 2022 01 21.
Article En | MEDLINE | ID: mdl-35064189

Type 2 diabetes (T2D) is a major public health problem, and gut microbiota dysbiosis has been implicated in the emergence of T2D in humans. Dietary interventions can indirectly influence the health status of patients with type 2 diabetes through their modulatory effects on the intestinal microbiota. In recent years, fecal microbiota transplantation is becoming familiar as a new medical treatment that can rapidly improve intestinal health. We conducted a 90-day controlled open-label trial to evaluate the health improvement ability of a specially designed diet, and the diet combined with fecal microbiota transplantation (FMT). According to our study, both diet and diet plus FMT treatments showed great potential in controlling blood glucose and blood pressure levels. Sequencing the V4 region of 16S rRNA gene on the Illumina MiniSeq platform revealed a shift of intestinal microbial community in T2D patients, and the changes were also observed in response to the treatments. FMT changed the gut microbiota more quickly than diet. Beneficial bacterium, such as Bifidobacterium, increased along the study and was negatively correlated with blood glucose, blood pressure, blood lipid and BMI. Sulfate-reducing bacteria (SRB), Bilophila and Desulfovibrio, decreased significantly after treatment, showed a positive correlation with blood glucose indices. Thus, the specially designed diet is beneficial to improve blood glucose control in diabetic patients, it also showed the potential to reverse dyslipidemia and dysarteriotony.


Diabetes Mellitus, Type 2/therapy , Dysbiosis/therapy , Fecal Microbiota Transplantation , Prebiotics/administration & dosage , Probiotics/administration & dosage , Adult , Aged , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/microbiology , Dysbiosis/diagnosis , Dysbiosis/microbiology , Feces/microbiology , Female , Gastrointestinal Microbiome , Humans , Male , Middle Aged , Treatment Outcome , Whole Grains
19.
Food Funct ; 13(3): 1218-1231, 2022 Feb 07.
Article En | MEDLINE | ID: mdl-35019929

This study aimed to investigate the potential anti-aging mechanisms of Agrocybe cylindracea crude polysaccharides (APS), when used synergistically with Lactobacillus rhamnosus GG (APS + LGG) in a D-galactose-induced aging mouse model. In the Morris water maze test, APS + LGG showed a significantly higher memory and learning capacity compared to untreated, APS only treated and LGG treated mice. This was thought to be mediated by increased levels of brain-derived neurotrophic factor, which decreased escape latency. In addition to this, in the aging mouse model, APS + LGG co-treatment markedly alleviated liver oxidation and metabolism by enhancing the antioxidant activity of enzymes; this decreased the lipid metabolism and peroxidation levels. Furthermore, high throughput sequencing analysis revealed that an APS + LGG supplemented feed increased the relative abundance of positive bacteria in the gut microbiota such as Alloprevotella and Parvibacter. Importantly, Alloprevotella and Parvibacter showed a negative relationship with low density lipoprotein-cholesterol in the Spearman correlation analysis. These results illustrate that APS, in combination with LGG, postponed aging related oxidative stress when used as a prebiotic. The proposed mechanism for this is the reduction in liver oxidation and lipid metabolism, as well as the regulation of gut microbiota.


Aging/drug effects , Agrocybe/metabolism , Antioxidants/pharmacology , Lacticaseibacillus rhamnosus/metabolism , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Prebiotics/administration & dosage , Animals , Antioxidants/metabolism , Disease Models, Animal , Male , Mice , Polysaccharides/metabolism
20.
Chembiochem ; 23(3): e202100559, 2022 02 04.
Article En | MEDLINE | ID: mdl-34788501

The members of the infant microbiome are governed by feeding method (breastmilk vs. formula). Regardless of the source of nutrition, a competitive growth advantage can be provided to commensals through prebiotics - either human milk oligosaccharides (HMOs) or plant oligosaccharides that are supplemented into formula. To characterize how prebiotics modulate commensal - pathogen interactions, we have designed and studied a minimal microbiome where a pathogen, Streptococcus agalactiae engages with a commensal, Streptococcus salivarius. We discovered that while S. agalactiae suppresses the growth of S. salivarius via increased lactic acid production, galacto-oligosaccharides (GOS) supplementation reverses the effect. This result has major implications in characterizing how single species survive in the gut, what niche they occupy, and how they engage with other community members.


Oligosaccharides/metabolism , Prebiotics , Streptococcus agalactiae/metabolism , Streptococcus salivarius/metabolism , Dietary Supplements , Gastrointestinal Microbiome , Humans , Lactic Acid/biosynthesis , Lactic Acid/chemistry , Milk, Human/chemistry , Oligosaccharides/administration & dosage , Prebiotics/administration & dosage
...